Modeling Soil Temperature for Different Days Using Novel Quadruplet Loss-Guided LSTM

Author:

Wang Xuezhi12ORCID,Li Wenhui12ORCID,Li Qingliang23ORCID,Li Xiaoning13ORCID

Affiliation:

1. College of Computer Science and Technology, Jilin University, Changchun 130012, China

2. Symbol Computation and Knowledge Engineer of Ministry of Education, Jilin University, ChangChun, Jilin Province, China

3. School of Computer Science and Technology, Changchun Normal University, Changchun 130032, China

Abstract

Soil temperature (Ts), a key variable in geosciences study, has generated growing interest among researchers. There are many factors affecting the spatiotemporal variation of Ts, which poses immense challenges for the Ts estimation. To enrich processing information on loss function and achieve better performance in estimation, the paper designed a new long short-term memory model using quadruplet loss function as an intelligence tool for data processing (QL-LSTM). The model in this paper combined the traditional squared-error loss function with distance metric learning between the sample features. It can zoom analyze the samples accurately to optimize the estimation accuracy. We applied the meteorological data from Laegern and Fluehli stations at 5, 10, and 15 cm depth on the 1st, 5th, and 15th day separately to verify the performance of the proposed soil temperature estimation model. Meanwhile, this paper inputs the variables into the proposed model including radiation, air temperature, vapor pressure deficit, wind speed, air pressure, and past Ts data. The performance of the model was tested by several error evaluation indices, including root mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe model efficiency coefficient (NS), Willmott Index of Agreement (WI), and Legates and McCabe index (LMI). As the test results at different soil depths show, our model generally outperformed the four existing advanced estimation models, namely, backpropagation neural networks, extreme learning machines, support vector regression, and LSTM. Furthermore, as experiments show, the proposed model achieved the best performance at the 15 cm depth of soil on the 1st day at Laegern station, which achieved higher WI (0.998), NS (0.995), and LMI (0.938) values, and got lower RMSE (0.312) and MAE (0.239) values. Consequently, the QL-LSTM model is recommended to estimate daily Ts profiles estimation on the 1st, 5th, and 15th days.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross-turbine fault diagnosis for wind turbines with SCADA data: A spatio-temporal graph network with multi-task learning;2024 39th Youth Academic Annual Conference of Chinese Association of Automation (YAC);2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3