Deep Multi-Scale Residual Connected Neural Network Model for Intelligent Athlete Balance Control Ability Evaluation

Author:

Xu Nannan1,Wang Xin2ORCID,Xu Yangming3,Zhao Tianyu4ORCID,Li Xiang5ORCID

Affiliation:

1. Sports Training Institute, Shenyang Sport University, Shenyang 110115, China

2. Department of Kinesiology, Shenyang Sport University, Shenyang 110115, China

3. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China

4. Key Laboratory of Structural Dynamics of Liaoning Province, College of Sciences, Northeastern University, Shenyang 110819, China

5. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Athlete balance control ability plays an important role in different types of sports. Accurate and efficient evaluations of the balance control abilities can significantly improve the athlete management performance. With the rapid development of the athlete training field, intelligent and automatic evaluations have been highly demanded in the past years. This study proposes a deep learning-based athlete balance control ability evaluation method through processing the time-series movement pressure measurement data. An end-to-end model structure is proposed, which directly analyzes the raw data and provides the evaluation results, which largely facilitates practical utilization. A multi-scale feature extraction scheme is employed, by exploring the learned features in different scales. A residual connected neural network architecture is further proposed. By using the short-cut connection, the deep neural network model can be more efficiently trained. Experiments on the real athlete balance control ability tests are carried out for validations. Through comparisons with different related methods, the results show the proposed deep multi-scale residual connected neural network model is well suited for the athlete balance control ability evaluation problem, and promising for actual applications in the real scenarios.

Funder

key RD plan of China for Winter Olympics

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3