Decreased Polymorphonuclear Myeloid-Derived Suppressor Cells and ROS Production Correlated Closely with Bronchopulmonary Dysplasia in Preterm Infants

Author:

Liu Wangkai1ORCID,Li Sitao2,Li Yushan1,Shen Wei3,Chen Haitian4,Li Xiaoyu1,Cai Linnuan1,Wu Fan5,Liu Yumei6ORCID,Meng Qiong7ORCID,Jiang Xiaoyun1ORCID

Affiliation:

1. Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

2. Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

3. Department of Pediatrics, Southern Medical University, Guangzhou, Guangdong, China

4. Department of Obstetrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

5. Department of Pediatrics, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China

6. Department of Neonatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China

7. Department of Pediatrics, Guangdong Second Provincial General Hospital, Guangzhou, China

Abstract

Background. Bronchopulmonary dysplasia (BPD) is one of the most serious complications in premature infants. Myeloid-derived suppressor cells (MDSCs) have been indicated to promote immune tolerance and induce anti-inflammatory responses during the neonatal stage. However, the role of MDSCs in BPD has not been completely expounded. Methods. 130 cases of newborns were collected from six tertiary hospitals in Guangzhou from August 2019 to June 2022. They were divided into BPD group, non-BPD preterm infants group, and term infants group according to gestational age and presence of BPD. The peripheral blood was collected and used to analyze the proportion, phenotypic, and function of MDSCs at 3 to 7 days and 8 to 14 days after birth, respectively. Results. We indicated that the number of both MDSCs in premature infants is reduced, and the number of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in peripheral blood of BPD infants was significantly lower than that of non-BPD infants under 34 weeks of gestational age ( P < 0.05 ). Furthermore, PMN-MDSCs from peripheral blood of patients presented inhibitory effect on proliferation of CD4+T and CD8+T cells in each group. However, PMN-MDSCs from BPD group had obviously weaker inhibitory effect on proliferation of CD4+T and CD8+T cells than that from non-BPD preterm infants group. In addition, we demonstrated that the expression of NADPH oxidase (Nox2) and reactive oxygen species (ROS) in PMN-MDSCs of BPD children was significantly lower than that in non-BPD preterm infants, suggesting that ROS pathway was affected in BPD in premature infants. Conclusion. This study preliminarily revealed the role of PMN-MDSCs in the pathogenesis of BPD in premature infants. The specific immune regulation mechanism of PMN-MDSCs in BPD will provide new ideas and strategies for clinical prevention and treatment of BPD in premature infants.

Funder

Science and Technology Planning Project of Guangzhou, China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3