Development of New Correlations and Parametric Optimization in Nanofluid Flow through Protruded Roughened Square Channel

Author:

Kumar Sunil1ORCID,Gupta Gaurav1ORCID,Tchier Fairouz2ORCID,Xin Qin3ORCID,Kumar Anil4,Shami Faria Ahmed5ORCID

Affiliation:

1. Yogananda School of Artificial Intelligence Computers and Data Science, Shoolini University, Solan 173229, Himachal Pradesh, India

2. Department of Mathematics, King Saud University, Riyadh, Saudi Arabia

3. Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands

4. Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India

5. Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bihar Sharif, Bangladesh

Abstract

This study discusses the optimization of heat-transfer parameters in nanofluid flow through a rough square surface channel including a protruded rib compound transverse pattern using response surface methodology (RSM). Flow and geometrical characteristics are optimized, resulting in optimal flow friction and heat transfer performances. The comparison of RSM’s estimated values to experimentally observed values was abandoned. The results demonstrate that the RSM-calculated values agree with the observed values and are within the 5.5 percent uncertainty limitations. Statistical correlations for Nusselt number and friction factor have been developed as functions of protrusion transverse rib height, protrusion transverse rib diameter, X-axis pitch, Y-axis pitch, and Reynolds number. These correlations have been found to predict the values within the error limits of ±8.9% and ±8.7%, respectively. On the basis of correlations developed for Nusselt number and friction factor, an attempt has been made to compare the thermohydraulic performance of protruded roughened square channel.

Funder

King Saud University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3