Investigation of Pharmacological Mechanisms of Yinhua Pinggan Granule on the Treatment of Pneumonia through Network Pharmacology and In Vitro

Author:

Jin Liang1,Zhang Yumei2,Yang Jiehong3,Zhou Huifen1ORCID,Jia Gaozhi4,He Yu5ORCID,Wan Haitong13ORCID

Affiliation:

1. School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China

2. Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, China

3. College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China

4. National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China

5. College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China

Abstract

Yinhua pinggan granule (YHPGKL), a traditional Chinese medical compound, could treat pneumonia. Although previous studies demonstrated the protective and therapeutic effects of YHPGKL on pneumonia, its potential molecular mechanisms and its effective components are still elusive. Herein, we performed a network pharmacology analysis to determine the possible signaling pathways involved in the protective effects of components of YHPGKL. A total of 119 components and 257 target proteins of YHPGKL were identified, among which 117 effective components interacted with 113 proteins related to pneumonia. Then, a compound-effective component-target protein network was established to screen the effective hub components. The top three effective components, namely luteolin, kaempferol, and quercetin, were selected. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of 113 proteins revealed a significant enrichment term associated with host immune and anti-infectious responses. Furthermore, by constructing a protein-protein interaction network between common proteins, ten hub proteins were identified, among which three hub components hit eight proteins. A further molecular docking analysis confirmed that the three effective hub components had a good affinity with six hub proteins. Eventually, the interactions were further visualized and screened on account of an infectious macrophage model in vitro. The results noted that three components could inhibit proinflammatory related hub genes but had no effect on survival-related hub genes. Thus, the three effective hub components and corresponding hub genes may play essential roles in the treatment of YHPGKL on pneumonia.

Funder

Research Project of Zhejiang Chinese Medical University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3