Experimental Study on Frost Heave Behavior of Steel Fiber Improved Soil

Author:

Shi Rongjian1ORCID,Huang Feng2,Yue Fengtian2,Hong Zequn2,Li Yichen3

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

3. Xuzhou Construction Engineering Testing Center Co. LTD., Xuzhou 221003, China

Abstract

The incorporation of steel fibers into the natural soil is generally considered to be a novel and effective way to reduce the amount of frost heave induced by an artificial freezing process in underground engineering. In order to analyze the frost heave behavior of the steel fiber improved soil, a one-dimensional frost heave test under the open recharge system was conducted in this paper, focusing on the influence of steel fiber content, size, and soil properties. The results show that small amounts of steel fibers in the soil will not significantly affect the freezing process and temperature distribution, while the water-conducting properties of the steel fibers and the effect of limiting the ice lens growth can reduce the frost heave rate of the samples incorporated with 0.5% steel fibers by 26.93%. At the same time, the reduction effect of the frost heave rate increases linearly with the increase of steel fiber content and length but weakens with the increase of steel fiber diameter. In terms of soil property influence, the frost heave rate of the clay samples was reduced by 14.31% compared to the silt samples, while the water migration was reduced by 11.99%. In addition, the cementation of the steel fibers with the soil will also inhibit the growth of the ice lens and reduce the external water migration, thus significantly lowering the frost heave rate. The results can provide a reference for the research of the frost deformation of similar modified soils.

Funder

National High-tech Research and Development Program

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3