QoS-Aware Fault Detection in Wireless Sensor Networks

Author:

De Paola Alessandra1ORCID,Lo Re Giuseppe1ORCID,Milazzo Fabrizio1ORCID,Ortolani Marco1ORCID

Affiliation:

1. DICGIM, University of Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo, Italy

Abstract

Wireless sensor networks (WSNs) are a fundamental building block of many pervasive applications. Nevertheless the use of such technology raises new challenges regarding the development of reliable and fault-tolerant systems. One of the most critical issues is the detection of corrupted readings amidst the huge amount of gathered sensory data. Indeed, such readings could significantly affect the quality of service (QoS) of the WSN, and thus it is highly desirable to automatically discard them. This issue is usually addressed through “fault detection” algorithms that classify readings by exploiting temporal and spatial correlations. Generally, these algorithms do not take into account QoS requirements other than the classification accuracy. This paper proposes a fully distributed algorithm for detecting data faults, taking into account the response time besides the classification accuracy. We adopt the Bayesian networks to perform classification of readings and the Pareto optimization to allow QoS requirements to be simultaneously satisfied. Our approach has been tested on a synthetic dataset in order to evaluate its behavior with respect to different values of QoS constraints. The experimental evaluation produced good results, showing that our algorithm is able to greatly reduce the response time at the cost of a small reduction in classification accuracy.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3