An Adaptive Superpixel Based Hand Gesture Tracking and Recognition System

Author:

Zhu Hong-Min1,Pun Chi-Man1

Affiliation:

1. Department of Computer and Information Science, University of Macau, Macau

Abstract

We propose an adaptive and robust superpixel based hand gesture tracking system, in which hand gestures drawn in free air are recognized from their motion trajectories. First we employed the motion detection of superpixels and unsupervised image segmentation to detect the moving target hand using the first few frames of the input video sequence. Then the hand appearance model is constructed from its surrounding superpixels. By incorporating the failure recovery and template matching in the tracking process, the target hand is tracked by an adaptive superpixel based tracking algorithm, where the problem of hand deformation, view-dependent appearance invariance, fast motion, and background confusion can be well handled to extract the correct hand motion trajectory. Finally, the hand gesture is recognized by the extracted motion trajectory with a trained SVM classifier. Experimental results show that our proposed system can achieve better performance compared to the existing state-of-the-art methods with the recognition accuracy 99.17% for easy set and 98.57 for hard set.

Funder

Research Committee of the University of Macau

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Hand Tremor Reduction System Based on Predictive Control in Patients with Parkinson Disease;Journal of Control;2021-07-01

2. CSI-HC: A WiFi-Based Indoor Complex Human Motion Recognition Method;Mobile Information Systems;2020-02-26

3. Robust Video Co-Segmentation Based on Co-Saliency of Superpixels;2017 14th International Conference on Computer Graphics, Imaging and Visualization;2017-05

4. Robust Region Descriptors for Shape Classification;2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV);2016-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3