Estimating Rice Yield under Changing Weather Conditions in Kenya Using CERES Rice Model

Author:

Nyang’au W. O.1,Mati B. M.1,Kalamwa K.1,Wanjogu R. K.2,Kiplagat L. K.3

Affiliation:

1. Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi 00200, Kenya

2. Mwea Irrigation and Agricultural Development Centre, P.O. Box 210, Wang’uru 00103, Kenya

3. Western Kenya Irrigation Schemes, P.O. Box 1010, Kisumu 40100, Kenya

Abstract

Effects of change in weather conditions on the yields of Basmati 370 and IR 2793-80-1 cultivated under System of Rice Intensification (SRI) in Mwea and Western Kenya irrigation schemes were assessed through sensitivity analysis using the Ceres rice model v 4.5 of the DSSAT modeling system. Genetic coefficients were determined using 2010 experimental data. The model was validated using rice growth and development data during the 2011 cropping season. Two SRI farmers were selected randomly from each irrigation scheme and their farms were used as research fields. Daily maximum and minimum temperatures and precipitation were collected from the weather station in each of the irrigation schemes while daily solar radiation was generated using weatherman in the DSSAT shell. The study revealed that increase in both maximum and minimum temperatures affects Basmati 370 and IR 2793-80-1 grain yield under SRI. Increase in atmospheric CO2concentration led to an increase in grain yield for both Basmati and IR 2793-80-1 under SRI and increase in solar radiation also had an increasing impact on both Basmati 370 and IR 2793-80-1 grain yield. The results of the study therefore show that weather conditions in Kenya affect rice yield under SRI and should be taken into consideration to improve food security.

Funder

National Irrigation Board

Publisher

Hindawi Limited

Subject

Agronomy and Crop Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3