Establishment of a Combined Diagnostic Model of Abdominal Aortic Aneurysm with Random Forest and Artificial Neural Network

Author:

Duan Yixuan1ORCID,Xie Enrui1ORCID,Liu Chang1ORCID,Sun Jingjing1ORCID,Deng Jie1ORCID

Affiliation:

1. Department of Cardiology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China

Abstract

Objectives. Abdominal aortic aneurysm (AAA), a disease with high mortality, is limited by the current diagnostic methods in the early screening. This study aimed to screen novel and significant biomarkers and construct a diagnostic model for AAA by using a novel machine learning method, i.e., an ensemble of the random forest (RF) algorithm and artificial neural network (ANN). Methods and Results. Through a search of the Gene Expression Omnibus (GEO) database, two large-sample gene expression datasets (GSE57691 and GSE47472) were downloaded and preprocessed. Differentially expressed genes (DEGs) in GSE57691 were identified by R software, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Essential metabolic pathways related to positive regulation of cell death and NAD binding were found. Then, RF was used to identify key genes from the DEGs, and an AAA diagnostic model was established by ANN. A transcription factor (TF) regulatory network of key genes related to angiogenesis and endothelial migration was constructed. Finally, a validation dataset was used to validate the model and the area under the receiver operating characteristic curve (AUC) value was high. Conclusion. Potential AAA-associated gene biomarkers were identified by RF, and a novel early diagnostic model of AAA was established by ANN. The AUC indicated that the diagnostic model had a highly satisfactory diagnostic performance. In conclusion, this study will provide a promising theoretical basis for further clinical and experimental studies.

Funder

Shannxi Science Funding

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3