A Novel Framework for Melanoma Lesion Segmentation Using Multiparallel Depthwise Separable and Dilated Convolutions with Swish Activations

Author:

Bukhari Maryam1ORCID,Yasmin Sadaf1ORCID,Habib Adnan2ORCID,Cheng Xiaochun3ORCID,Ullah Farhan4ORCID,Yoo Jaeseok5ORCID,Lee Daewon56ORCID

Affiliation:

1. Department of Computer Science, COMSATS University Islamabad, Attock Campus, Attock, Pakistan

2. Department of Computer Engineering, UET Taxila, Taxila, Pakistan

3. Department of Computer Science, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, Wales, UK

4. School of Software, Northwestern Polytechnical University, Xian 710072, China

5. Graduate School of Advanced Imaging Science, Chung-Ang University, Seoul, Republic of Korea

6. School of Art and Technology, College of Art and Technology, Chung-Ang University, Seoul, Republic of Korea

Abstract

Skin cancer remains one of the deadliest kinds of cancer, with a survival rate of about 18–20%. Early diagnosis and segmentation of the most lethal kind of cancer, melanoma, is a challenging and critical task. To diagnose medicinal conditions of melanoma lesions, different researchers proposed automatic and traditional approaches to accurately segment the lesions. However, visual similarity among lesions and intraclass differences are very high, which leads to low-performance accuracy. Furthermore, traditional segmentation algorithms often require human inputs and cannot be utilized in automated systems. To address all of these issues, we provide an improved segmentation model based on depthwise separable convolutions that act on each spatial dimension of the image to segment the lesions. The fundamental idea behind these convolutions is to divide the feature learning steps into two simpler parts that are spatial learning of features and a step for channel combination. Besides this, we employ parallel multidilated filters to encode multiple parallel features and broaden the view of filters with dilations. Moreover, for performance evaluation, the proposed approach is evaluated on three different datasets including DermIS, DermQuest, and ISIC2016. The finding indicates that the suggested segmentation model has achieved the Dice score of 97% for DermIS and DermQuest and 94.7% for the ISBI2016 dataset, respectively.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3