Correlation between Fracture Morphology and Microstructural Evolution during Long-Term Aging of EK61 Superalloy

Author:

Huang Jin12,Xu Guohua2,Qin Heyong2,Zheng Lei1ORCID

Affiliation:

1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. High-Temperature Materials Department, China Iron & Steel Research Institute Group, Beijing 100081, China

Abstract

Microstructural evolutions of EK61 superalloy during long-term aging until 1000 h at 700°C and 750°C, respectively, are studied by combination of Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). Impact fracture morphologies after aging for different time are observed by the SEM. The microstructure is found to be relatively stable during aging at 700°C, and the fracture morphologies are characterized by transgranular fracture. At 750°C, the coarsening of γ phase leads the reduction of the quantity of dimples, the chainization of carbides on grain boundaries leads to intergranular fracture, and the netting of η phases within grains leads to the formation of lamellar cleavage steps. It is obvious that the destabilization of precipitated phases affects fracture morphology significantly. The relationship between fracture morphology and the microstructure promotes the evaluation of service reliability of EK61 superalloy.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3