An Application of Homotopy Perturbation Method to Fractional-Order Thin Film Flow of the Johnson–Segalman Fluid Model

Author:

Qayyum Mubashir1ORCID,Ismail Farnaz2,Ali Shah Syed Inayat2,Sohail Muhammad3ORCID,El-Zahar Essam R.45,Gokul K. C6ORCID

Affiliation:

1. Department of Sciences and Humanities, National University of Computer & Emerging Sciences FAST Lahore, Lahore, Pakistan

2. Department of Mathematics, Islamia College University Peshawar, Peshawar, Pakistan

3. Department of Applied Mathematics and Statistics, Institute of Space Technology, P.O. Box 2750, Islamabad, Pakistan

4. Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia

5. Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt

6. Department of Natural Sciences (Mathematics Group), Kathmandu University, Kathmandu, Nepal

Abstract

Thin film flow is an important theme in fluid mechanics and has many industrial applications. These flows can be observed in oil refinement process, laser cutting, and nuclear reactors. In this theoretical study, we explore thin film flow of non-Newtonian Johnson–Segalman fluid on a vertical belt in fractional space in lifting and drainage scenarios. Modelled fractional-order boundary value problems are solved numerically using the homotopy perturbation method along with Caputo definition of fractional derivative. In this study, instantaneous and average velocities and volumetric flux are computed in lifting and drainage cases. Validity and convergence of homotopy-based solutions are confirmed by finding residual errors in each case. Moreover, the consequences of different fractional and fluid parameters are graphically studied on the velocity profile. Analysis shows that fractional parameters have opposite effects of the fluid velocity.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference39 articles.

1. The Drainage of Newtonian Liquids Entrained on a Vertical Surface

2. Theory and modeling of thin film flows;S. B. G. O. Brien;Encyclopedia of Surface and Colloid Science,2002

3. The Draining of a Vertical Plate

4. Viscous lifting and drainage of liquids

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3