An Improved Squirrel Search Algorithm for Optimization

Author:

Zheng Tongyi1,Luo Weili1ORCID

Affiliation:

1. School of Civil Engineering, Guangzhou University, Guangzhou, China

Abstract

Squirrel search algorithm (SSA) is a new biological-inspired optimization algorithm, which has been proved to be more effective for solving unimodal, multimodal, and multidimensional optimization problems. However, similar to other swarm intelligence-based algorithms, SSA also has its own disadvantages. In order to get better global convergence ability, an improved version of SSA called ISSA is proposed in this paper. Firstly, an adaptive strategy of predator presence probability is proposed to balance the exploration and exploitation capabilities of the algorithm. Secondly, a normal cloud model is introduced to describe the randomness and fuzziness of the foraging behavior of flying squirrels. Thirdly, a selection strategy between successive positions is incorporated to preserve the best position of flying squirrel individuals. Finally, in order to enhance the local search ability of the algorithm, a dimensional search enhancement strategy is utilized. 32 benchmark functions including unimodal, multimodal, and CEC 2014 functions are used to test the global search ability of the proposed ISSA. Experimental test results indicate that ISSA provides competitive performance compared with the basic SSA and other four well-known state-of-the-art optimization algorithms.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3