A Safe and Secured Medical Textual Information Using an Improved LSB Image Steganography

Author:

Ogundokun Roseline Oluwaseun1ORCID,Abikoye Oluwakemi Christiana2

Affiliation:

1. Department of Computer Science, Landmark University Omu Aran, Nigeria

2. Department of Computer Science, University of Ilorin, Kwara State, Nigeria

Abstract

Safe conveyance of medical data across unsecured networks nowadays is an essential issue in telemedicine. With the exponential growth of multimedia technologies and connected networks, modern healthcare is a huge step ahead. Authentication of a diagnostic image obtained from a specialist at a remote location which is from the sender is one of the most challenging tasks in an automated healthcare setup. Intruders were found to be able to efficiently exploit securely transmitted messages from previous literature since the algorithms were not efficient enough leading to distortion of information. Therefore, this study proposed a modified least significant bit (LSB) technique capable of protecting and hiding medical data to solve the crucial authentication issue. The application was executed and established by utilizing MATLAB 2018a, and it used a logical bit shift operation for execution. The investigational outcomes established that the proposed technique can entrench medical information without leaving a perceptible falsification in the stego image. The result of this implementation shows that the modified LSB image steganography outperformed the standard LSB technique with a higher PSNR value and lower MSE value when compared with previous research works. The number of shifts was added as a new performance metric for the proposed system. The study concluded that the proposed secured medical information system was evidenced to be proficient in secreting medical information and creating undetectable stego images with slight entrenching falsifications when likened to other prevailing approaches.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Media Technology,Communication

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3