Three-Dimensional Force Prediction of a Flexible Tactile Sensor Based on Radial Basis Function Neural Networks

Author:

Wang Feilu1ORCID,Song Yang12ORCID

Affiliation:

1. School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230601, China

2. Key Laboratory of Building Information Acquisition and Measurement Control Technology, Anhui Jianzhu University, Hefei 230601, China

Abstract

A flexible tactile sensor array with 6 × 6 N-type sensitive elements made of conductive rubber is presented in this paper. The property and principle of the tactile sensor are analyzed in detail. Based on the piezoresistivity of conductive rubber, this paper takes full advantage of the nonlinear approximation ability of the radial basis function neural network (RBFNN) method to approach the high-dimensional mapping relation between the resistance values of the N-type sensitive element and the three-dimensional (3D) force and to accomplish the accurate prediction of the magnitude of 3D force loaded on the sensor. In the prediction process, the k -means algorithm and recursive least square (RLS) method are used to optimize the RBFNN, and the k -fold cross-validation method is conducted to build the training set and testing set to improve the prediction precision of the 3D force. The optimized RBFNN with different spreads is used to verify its influence on the performance of 3D force prediction, and the results indicate that the spread value plays a very important role in the prediction process. Then, sliding window technology is introduced to build the RBFNN model. Experimental results show that setting the size of the sliding window appropriately can effectively reduce the prediction error of the 3D force exerted on the sensor and improve the performance of the RBFNN predictor, which means that the sliding window technology is very feasible and valid in 3D force prediction for the flexible tactile sensor. All of the results indicate that the optimized RBFNN with high robustness can be well applied to the 3D force prediction research of the flexible tactile sensor.

Funder

Nature Science Research Key Project for Universities in Anhui Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3