Applications of the Atmospheric Transport and Diffusion of LES Modeling to the Spread and Dissipation of COVID-19 Aerosol Particles inside and outside the Japan National Stadium (Tokyo Olympic Stadium)

Author:

Uchida Takanori1ORCID,Araya Ryo2ORCID

Affiliation:

1. Research Institute for Applied Mechanics (RIAM), Kyushu University, 6-1 Kasuga-kouen, Kasuga, Fukuoka 816-8580, Japan

2. Environmental GIS Laboratory Co. Ltd., Japan

Abstract

In this paper, we use an analysis function for gas diffusion known as the Research Institute for Applied Mechanics, Kyushu University, Computational Prediction of Airflow over Complex Terrain (RIAM-COMPACT), which was developed for complex terrain, in Airflow Analyst software, and apply it to the spread and dissipation of a fluid layer (assuming the fluid layer contains COVID-19 particles). First, to verify the prediction accuracy of the gas diffusion using RIAM-COMPACT, comparisons with past wind tunnel test results conducted on simple and complex terrains are presented under neutral atmospheric stability. The results of the numerical simulations carried out in this study show good agreement with the wind tunnel experiments for both simple and complex terrains. Next, a model of the Japan National Stadium (Tokyo Olympic Stadium) was constructed using 3D detailed topographic Advanced World 3D Map (AW3D) data generated by combining high-resolution satellite images. We tried to reproduce the hypothetical spread and dissipation of the fluid layer (assuming the fluid layer contains COVID-19 particles) inside and outside of the Japan National Stadium using Airflow Analyst implemented with the RIAM-COMPACT analysis function for gas diffusion. We paid special attention to the effect of wind ventilation driven by natural wind. The numerical results under various scenarios show that ventilation driven by natural wind is very effective for the Japan National Stadium.

Publisher

Hindawi Limited

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3