A Critical Review on Effect of Nanomaterials on Workability and Mechanical Properties of High-Performance Concrete

Author:

Zhang Peng1ORCID,Wang Lei1,Wei Hua2,Wang Juan1ORCID

Affiliation:

1. School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China

2. Henan Quality Testing Supervision Station of Basic Transportation Construction, Zhengzhou 450003, China

Abstract

The application of nanomaterials in high-performance concrete (HPC) has been extensively studied worldwide due to their large surface areas, small particle sizes, filling effects, and macroquantum tunneling effects. The addition of nanomaterials in HPC has great contribution to enhancing the pore size of the cementitious matrix, improving the hydration of cement, and making the matrix much denser. In order to present an exhaustive insight into the feasibility of HPC reinforced with nanomaterials, the new development of HPC was summarized and the influence of different nanomaterials on the properties of HPC was reviewed based on more than 100 recent studies in this literature review. Workability, compressive strength, tensile strength, and flexural strength properties of HPC with nanomaterials were discussed in detail. In addition, nanomaterial-modified HPC was compared with the traditional concrete and obtained a lot of valuable results. The results in the present review indicate that the addition of various nanomaterials improves the mechanical properties of HPC, while reducing the workability of HPC. However, there is an optimal dosage of nanomaterial for improving the mechanical properties of HPC. Improving the properties of HPC by adding nanomaterials is expected to become a mainstream technique in the future. This literature review can provide comprehensive and systematic knowledge to researchers and engineers working on HPC and promote the application of this new HPC in modern civil engineering.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3