Muskmelon Maturity Stage Classification Model Based on CNN

Author:

Zhao Huamin1ORCID,Xu Defang1ORCID,Lawal Olarewaju1ORCID,Zhang Shujuan1ORCID

Affiliation:

1. College of Agricultural Engineering, Shanxi Agricultural University, Taigu County, Jinzhong City, Shanxi Province 030801, China

Abstract

How to quickly and accurately judge the maturity of muskmelon is very important to consumers and muskmelon sorting staff. This paper presents a novel approach to solve the difficulty of muskmelon maturity stage classification in greenhouse and other complex environments. The color characteristics of muskmelon were used as the main feature of maturity discrimination. A modified 29-layer ResNet was applied with the proposed two-way data augmentation methods for the maturity stages of muskmelon classification using indoor and outdoor datasets to create a robust classification model that can generalize better. The results showed that code data augmentation which is the first way caused more performance degradation than input image augmentation—the second way. This established the effectiveness of the code data augmentation compared to image augmentation. Nevertheless, the two-way data augmentations including the combination of outdoor and indoor datasets to create a classification model revealed an excellent performance of F1 score ∼99%, and hence the model is applicable to computer-based platform for quick muskmelon stages of maturity classification.

Funder

University Science and Technology Innovation Project of Shanxi, China

Publisher

Hindawi Limited

Subject

General Computer Science,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3