DSCP: Depthwise Separable Convolution-Based Passive Indoor Localization Using CSI Fingerprint

Author:

Han Chong12ORCID,Xun Wenjing1,Sun Lijuan12,Lin Zhaoxiao1,Guo Jian12

Affiliation:

1. College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

2. Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Abstract

Wi-Fi-based indoor localization has received extensive attention in wireless sensing. However, most Wi-Fi-based indoor localization systems have complex models and high localization delays, which limit the universality of these localization methods. To solve these problems, a depthwise separable convolution-based passive indoor localization system (DSCP) is proposed. DSCP is a lightweight fingerprint-based localization system that includes an offline training phase and an online localization phase. In the offline training phase, the indoor scenario is first divided into different areas to set training locations for collecting CSI. Then, the amplitude differences of these CSI subcarriers are extracted to construct location fingerprints, thereby training the convolutional neural network (CNN). In the online localization phase, CSI data are first collected at the test locations, and then, the location fingerprint is extracted and finally fed to the trained network to obtain the predicted location. The experimental results show that DSCP has a short training time and a low localization delay. DSCP achieves a high localization accuracy, above 97%, and a small median localization distance error of 0.69 m in typical indoor scenarios.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3