Research on the Preparation of Microbial Capsules by Epoxy Resin-Coated Bacillus pasteurii

Author:

Hu Yingying12,Liu Weitao1ORCID,Jia Xinlei2ORCID,Xu Lanjuan2,Shen Jianjun2,Hu Xiangming1

Affiliation:

1. College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. Department of Chemical Engineering and Safety, Bin Zhou University, Bin Zhou 256600, China

Abstract

With the increasing number of underground engineering construction projects such as coal mining, tunnel, and subway, water inrush disasters occur more and more frequently. Inspired by the phenomenon of microbial mineralization and diagenesis, microbial-induced calcium carbonate precipitation (MICP) is used to repair cracks in cement-based materials, which provides a new idea to solve the problem of water inrush. To investigate the self-healing properties of microbial capsules, this paper selected epoxy resin E-51 cured by DMP-30 as the wall material and Bacillus pasteurii as the core materials for experiments. In this paper, a single-factor method was adopted to determine the optimal preparation process of microbial capsules and the oil-phase separation method to prepare the microbial capsules. The effects of various factors on the experimental results under different core-wall ratios, reaction time, reaction temperatures, and agitation rates were analyzed. Microbial capsules were analyzed by Fourier transform infrared spectroscopy and optical microscopy to explore the functional groups and features of microbial capsules. The experimental results showed that the microbial capsules achieved the best performance with a core-to-wall ratio of 1 : 3, a reaction temperature of 50°C, a reaction time of 40 min, and a stirring rate of 300 rpm. Meanwhile, we determined the spore survival rate of microbial capsules and finally studied the waterproofness, storage stability, and rupture under the pressure of microbial capsules. We concluded that microbial capsules have high-efficiency and self-healing properties.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3