Green Synthesis of Magnetic Nanoparticles Using Satureja hortensis Essential Oil toward Superior Antibacterial/Fungal and Anticancer Performance

Author:

Ahmadi Shahram1ORCID,Fazilati Mohammad1ORCID,Nazem Habibollah1ORCID,Mousavi Seyyed Mojtaba2ORCID

Affiliation:

1. Department of Science, Payame Noor University (PNU), Tehran, Iran

2. Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

Abstract

The biological synthesis of nanoparticles, due to their environmental and biomedical properties, has been of particular interest to scientists and physicians. Here, iron nanoparticles (FeNPs) were synthesized using Satureja hortensis essential oil. Then, the chemical, functional, and morphological properties of these nanoparticles were characterized by typical experiments such as Uv-Vis, FTIR, XRD, FE-SEM, PSA, zeta potential, EDX, and EDX mapping. The results indicated Fe nanoparticles’ formation with a cubic morphological structure and a particle size in the range of 9.3-27 nm. The antimicrobial effects of these nanoparticles were further evaluated using disc diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungal concentration (MFC) against two gram-positive bacterial strains (Staphylococcus aureus and Corynebacterium glutamicum), two gram-negative bacterial strains (Pseudomonas aeruginosa and Escherichia coli), and one fungus species Candida albicans. The results showed that green-synthesized Fe nanoparticles possessed higher antimicrobial properties than Satureja hortensis essential oil against selected pathogenic microorganisms, especially Gram-negative bacteria. Finally, the anticancer effect of these Fe nanoparticles was investigated on human cancer cells, K-562, and MCF-7, by the MTT assay. The results showed the anticancer effect of these nanoparticles against selected cell lines.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3