Modelling of User Behaviour for Static Rebalancing of Bike Sharing System: Transfer of Demand from Bike-Shortage Stations to Neighbouring Stations

Author:

Costa Affonso Roberta1ORCID,Couffin Florent1,Leclaire Patrice1

Affiliation:

1. Quartz Laboratory (EA 7393), Supméca, 93407 Saint-Ouen, France

Abstract

Bike sharing systems are becoming more and more common around the world. One of the main difficulties is to ensure the availability of bicycles in order to satisfy users. To achieve this objective, managers of these systems set up rebalancing vehicles that displace bicycles to stations that are likely to be in a situation of bike shortage. In order to determine which stations must be supplied on a priority basis and the number of bicycles to be supplied (named in this paper as rebalancing plan), the aim is generally to reduce the lost demand for each station, i.e., the gap between the demand for bicycles and the number of bicycles at a station. On the one hand, this paper proposes an algorithm that evaluates the lost demand in a more realistic way, by describing the behaviour of users faced with a bike-shortage station. It takes into account the possibility that a proportion of users who cannot find bicycles will move to a neighbouring station that is not empty. This proportion depends on the distance between stations and corresponds to the number of users willing to walk a given distance to a neighbouring station. On the other hand, this algorithm provides the value of the objective function to be minimized to a static rebalancing plan algorithm based on a Random Search metaheuristic. The quantities of bicycles to be picked up and dropped off at each station are calculated in a static rebalancing context. The calculation of lost demand based on this algorithm, which simulates user behaviour, was compared with that one obtained by the classical method on a real numerical example obtained from the open data of Parisian Vélibʼ (more than 1200 stations). In addition, the efficiency of the rebalancing algorithm coupled with the user behaviour simulation algorithm was evaluated on this numerical example and allowed to obtain very good results compared to the rebalancing performed by the system operator.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3