Appearance of Ferromagnetic Property for Si Nanopolycrystalline Body and Vanishing of Electrical Resistances at Local High Frequencies

Author:

Saiki Taku1ORCID,Iida Yukio1,Inada Mitsuru1

Affiliation:

1. Faculty of Engineering Science, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan

Abstract

Reduction in the skin effect for the sintered Si nanopolycrystalline body as an electricity conductor at a high frequency due to its nanostructure was studied. Singular disappearance of electrical resistances near a local high magnetic harmonic frequency of a few MHz was observed. This phenomenon has not been observed for conventional ferromagnetic metals. The measured electrical resistances changed to almost 0 mΩ at room temperature. At the same time, negative resistance of the sintered Si nanopolycrystalline body was observed. It will be applicable to electronic transmittance lines or semiconductors. Numerical calculation was also performed on the electrical resistance with frequency dependency while considering the electric field and magnetic field in the sintered Si nanopolycrystalline body. The experimental and calculated results are compared. The calculation could explain the variation of the relative permittivity of the Si nanopolycrystalline body and the phenomenon for the theoretical disappearance of the resistivity at the MHz frequency. Reduced Si nanoparticles from SiO2 powder were synthesized by laser ablation in liquid. A Si nanopolycrystalline body made of the reduced Si nanoparticles was fabricated. It was found by measuring the magnetization property of the body of the sintered Si nanopolycrystalline body which is ferromagnetic. Dangling bonds (unpaired electrons) have long been known to occur due to defects in Si crystals. Perfect Si without defective crystals has no dangling bonds. However, Si nanoparticles have many dangling bonds. High-density dangling bonds cause the sintered Si nanopolycrystalline body to have ferromagnetism. In this study, the density of the unpaired electrons in the sintered Si nanopolycrystalline body was observed using ESR. It has been clarified that the Si nanopowder and the sintered Si nanopolycrystalline body have numerous dangling bonds. Both densities of the dangling bonds were evaluated.

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Axial-Flux Generator Using a Sintered Iron Nano-Polycrystalline Body;Journal of Electronic Materials;2021-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3