Density-Based Geometric One-Class Classifier Combined with Genetic Algorithm

Author:

Kim Do Gyun1,Choi Jin Young1ORCID

Affiliation:

1. Department of Industrial Engineering, Ajou University, Suwon, Republic of Korea

Abstract

One of the most prospective issues in recent machine learning research is one-class classification (OCC), which considers datasets composed of only one class and outlier. It is more reasonable than the traditional multiclass classification in dealing with problematic datasets or special cases. Generally, classification accuracy and interpretability for users are considered to have a trade-off in OCC methods. A classifier based on hyperrectangle (H-RTGL) can alleviate such a trade-off and uses H-RTGL formulated by the conjunction of geometric rules (called an interval). This interval can form a basis for interpretability since it can be easily understood by the user. However, the existing H-RTGL-based OCC classifiers have the following limitations: (i) they cannot reflect the density of the target class, (ii) the density is considered using a primitive interval generation method, and (iii) there exists no systematic procedure for determining the hyperparameter of the H-RTGL-based OCC classifier, which influences its classification performance. Therefore, we suggest a one-class hyperrectangle descriptor based on density 1 H R D d with a more elaborate interval generation method, including parametric and nonparametric approaches. Specifically, we design a genetic algorithm that comprises a chromosome structure and genetic operators for systematic generation of 1 H R D d through optimization of the hyperparameter. Our study is validated through a numerical experiment using several actual datasets with different sizes and features, and the result is compared to the existing OCC algorithms along with other H-RTGL-based classifiers.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3