Research on Dynamic Models and Performances of Shield Tunnel Boring Machine Cutterhead Driving System

Author:

Li Xianhong12,Yu Haibin1,Yuan Mingzhe1,Zhao Yu3

Affiliation:

1. Department of Information Service and Intelligent Control, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

2. University of Chinese Academy of Sciences (Graduate School of Chinese Academy of Sciences), Beijing 100039, China

3. NHI Shenyang Heavy Machinery Group TBM Company, Shenyang 110025, China

Abstract

A general nonlinear time-varying (NLTV) dynamic model and linear time-varying (LTV) dynamic model are presented for shield tunnel boring machine (TBM) cutterhead driving system, respectively. Different gear backlashes and mesh damped and transmission errors are considered in the NLTV dynamic model. The corresponding multiple-input and multiple-output (MIMO) state space models are also presented. Through analyzing the linear dynamic model, the optimal reducer ratio (ORR) and optimal transmission ratio (OTR) are obtained for the shield TBM cutterhead driving system, respectively. The NLTV and LTV dynamic models are numerically simulated, and the effects of physical parameters under various conditions of NLTV dynamic model are analyzed. Physical parameters such as the load torque, gear backlash and transmission error, gear mesh stiffness and damped, pinions inertia and damped, large gear inertia and damped, and motor rotor inertia and damped are investigated in detail to analyze their effects on dynamic response and performances of the shield TBM cutterhead driving system. Some preliminary approaches are proposed to improve dynamic performances of the cutterhead driving system, and dynamic models will provide a foundation for shield TBM cutterhead driving system's cutterhead fault diagnosis, motion control, and torque synchronous control.

Funder

National High Technology Research Development Plan Project

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3