Employing a Machine Learning Approach to Detect Combined Internet of Things Attacks against Two Objective Functions Using a Novel Dataset

Author:

Foley John1,Moradpoor Naghmeh1ORCID,Ochenyi Henry1

Affiliation:

1. School of Computing, Edinburgh Napier University, Merchiston Campus, 10 Colinton Road, Edinburgh EH10 5DT, UK

Abstract

One of the important features of routing protocol for low-power and lossy networks (RPLs) is objective function (OF). OF influences an IoT network in terms of routing strategies and network topology. On the contrary, detecting a combination of attacks against OFs is a cutting-edge technology that will become a necessity as next generation low-power wireless networks continue to be exploited as they grow rapidly. However, current literature lacks study on vulnerability analysis of OFs particularly in terms of combined attacks. Furthermore, machine learning is a promising solution for the global networks of IoT devices in terms of analysing their ever-growing generated data and predicting cyberattacks against such devices. Therefore, in this paper, we study the vulnerability analysis of two popular OFs of RPL to detect combined attacks against them using machine learning algorithms through different simulated scenarios. For this, we created a novel IoT dataset based on power and network metrics, which is deployed as part of an RPL IDS/IPS solution to enhance information security. Addressing the captured results, our machine learning approach is successful in detecting combined attacks against two popular OFs of RPL based on the power and network metrics in which MLP and RF algorithms are the most successful classifier deployment for single and ensemble models.

Funder

Edinburgh Napier University

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3