Analysis on Dynamic Response Characteristics of High-Speed Solenoid Valve for Electronic Control Fuel Injection System

Author:

Zhang Jianyu12,Liu Peng34ORCID,Fan Liyun5ORCID,Deng Yajie34

Affiliation:

1. The 713 Research Institute of CSIC, Zhengzhou 450015, China

2. The Underwater Intelligent Equipment Laboratory of Henan Province, Zhengzhou 450015, China

3. College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China

4. Hunan Provincial Key Laboratory of Intelligent Manufacturing Technology for High-Performance Mechanical Equipment, Changsha University of Science and Technology, Changsha 410114, China

5. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

A 3D numerical simulation model of high-speed solenoid valve (HSV) for electronic control fuel injection system (ECFIS) has been developed. The model has been validated experimentally with acceptable maximum errors of 2% and 8.7% in closure response time and open response time, respectively. Effect of assembly parameters such as residual air gap, maximum lift of valve stem, mass of the moving parts, spring stiffness, and spring pretightening force on dynamic response characteristics of HSV has been analyzed in detail using the simulation model, and influence rules of various parameters on dynamic response characteristics have been established. Moreover, the correlation between interaction factors of main influence factors and dynamic response characteristics of HSV has also been analyzed. It is concluded that residual air gap, maximum lift of the valve stem, and spring pretightening force are the main influencing factors on dynamic response characteristics of HSV, and there are obvious interaction effects between them; when two or three of these main influencing factors are adjusted at the same time, the interaction effects should be considered.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3