Two-Dimensional Thin Layer Chromatography-Bioautography Designed to Separate and Locate Metabolites with Antioxidant Activity Contained on Spirulina platensis

Author:

Cid-Hernández Margarita1,López Dellamary-Toral Fernando Antonio2,González-Ortiz Luis Javier1,Sánchez-Peña María Judith1,Pacheco-Moisés Fermín Paul1ORCID

Affiliation:

1. Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, 44430 Guadalajara, Jalisco, Mexico

2. Departamento de Madera, Celulosa y Papel, Universidad de Guadalajara, km 15.5 de la Carretera Guadalajara-Nogales, 45220 Zapopan, Jalisco, Mexico

Abstract

Spirulina platensis contains several biologically active compounds, some of them with antioxidant activity. Nevertheless, not all of these compounds have been identified to date. As a first step to achieving such identification, a methodology to perform two-dimensional thin layer chromatography bioautographies on silica gel thin layer chromatography plates was proposed. Starting with a reference binary system, 5 other binary systems were tested, in which the relative polarity was systematically increased. To further improve the separation behavior, a phase modifier (NH4OH) was used. The best separation results were obtained with the isopropyl alcohol/ethyl acetate/NH4OH ternary system. This experimental system allowed four well-resolved spots showing antioxidant activity as well as two additional areas with mixtures containing antioxidant compounds. Although the proposed methodology was designed with a specific application, it would be predictable that its field of use could be considerably greater, making the convenient modifications on the solvent polarity and “masking level” produced by the ammonium derivatives.

Publisher

Hindawi Limited

Subject

Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3