Balloon Deflation Strategy during Primary Percutaneous Coronary Intervention in Acute ST-Segment Elevation Myocardial Infarction: A Randomized Controlled Clinical Trial and Numerical Simulation-Based Analysis

Author:

Gu Jun1,Zhuo Yang1,Liu Tian-jiao1,Li Jie2,Yin Zhao-fang1,Xu Zuo-jun1,Fan Li1,He Qing1,Chen Kan1,Zeng Hua-su1,Wang Xiao-fei1,Fan Yu-qi1,Zhang Jun-feng1,Liang Fu-you23ORCID,Wang Chang-qian1ORCID

Affiliation:

1. Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China

2. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China

3. Institute for Personalized Medicine, Sechenov University, Moscow, Russia

Abstract

Background. Primary percutaneous coronary intervention (PCI) is the best available reperfusion strategy in patients with acute ST-segment elevation myocardial infarction (STEMI). However, PCI is associated with a serious problem known as no-reflow phenomenon, resulting in poor clinical and functional outcomes. This study aimed to compare the influences of different balloon deflation velocity on coronary flow and cardiovascular events during primary PCI in STEM as well as transient hemodynamic changes in in vitro experiments.Method and Results. 211 STEMI patients were randomly assigned to either a rapid or a slow balloon deflation group during stent deployment. The primary end point was coronary flow at the end of PCI procedure, and secondary end points included myocardial infarct size. Transient hemodynamic changes were evaluated through an in vitro experimental apparatus and a computer model. In clinical practice, the level of corrected TIMI frame count (cTFC) in slow balloon deflation after primary PCI was significantly lower than that of rapid balloon deflation, which was associated with smaller infarct size. Numerical simulations revealed that the rapid deflation led to a sharp acceleration of flow in the balloon-vessel gap and a concomitant abnormal rise in wall shear stress (WSS).Conclusion. This randomized study demonstrated that the slow balloon deflation during stent implantation improved coronary flow and reduced infarct size in reperfused STEMI. The change of flow in the balloon-vessel gap and WSS resulted from different balloon deflation velocity might be partly accounted for this results.

Funder

School of Medicine, Shanghai Jiao Tong University

Publisher

Hindawi Limited

Subject

Cardiology and Cardiovascular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3