Evaluating the Acute Effect of Stereoscopic Recovery by Dichoptic Stimulation Using Electroencephalogram

Author:

Shi Wei1ORCID,He Luyang2ORCID,Lv Bin2ORCID,Li Li1ORCID,Wu Tongning2ORCID

Affiliation:

1. Department of Ophthalmology, Beijing Children’s Hospital, Capital Medical University, Beijing, China

2. China Academy of Information and Communications Technology, Beijing, China

Abstract

Amblyopia is a common developmental disorder in adolescents and children. Stereoscopic loss is a symptom of amblyopia that can seriously affect the quality of patient’s life. Recent studies have shown that the push-pull perceptual learning protocol had a positive effect on stereoscopic recovery. In this study, we developed a stereoscopic training method using a polarized visualization system according to the push-pull protocol. Dichoptic stimulation for 36 anisometropic and amblyopic subjects and 33 children with normal visual acuity (VA) has been conducted. Electroencephalogram (EEG) was used to evaluate the neurophysiological changes before, during, and after stimulation. For the anisometropic and amblyopic subjects, the statistical analysis demonstrated significant differences (p<0.01) in the beta rhythm at the middle temporal and occipital lobes, while the EEG from the normal VA subjects indicated no significant changes when comparing the results before and after training. We concluded that the dichoptic training in our study can activate the middle temporal visual area and visual cortex. The EEG changes can be used to evaluate the training effects. This study also found that the beta band EEG acquired during visual stimulation at the dorsal visual stream can be potentially used for predicting acute training effect. The results facilitated the optimization of the individual training plan.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3