ROCK Inhibitor-Induced Promotion of Retinal Pigment Epithelial Cell Motility during Wound Healing

Author:

Kamao Hiroyuki1ORCID,Miki Atsushi1ORCID,Kiryu Junichi1

Affiliation:

1. Department of Ophthalmology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0114, Japan

Abstract

Purpose. No standard therapy for RPE tear, a complication of neovascular age-related macular degeneration, exists even though RPE tears cause severe vision loss, and promotion of cell proliferation and/or migration could be a candidate RPE tear therapy. The aim of this study is to evaluate the effect of Rho-associated coiled-coil containing kinase (ROCK) inhibitor Y27632 on retinal pigment epithelial (RPE) cell motility during wound healing. Methods. Human RPE cells were cultured in media with and without 10 μM Y27632. A luminescent cell viability assay and vinculin immunocytochemistry were used to test the Y27632 effect on RPE cell adhesion. The mean size of vinculin puncta was quantified from immunofluorescence images. RPE cell motility during wound healing was evaluated using time-lapse imaging and measuring cell migration distances and cell coverage rate in wound fields. Results. The number of adhered RPE and mean size of vinculin puncta were, respectively, 20519 cells and 3.65 μm2 under nontreatment and 23569 cells and 0.66 μm2 under Y27632 treatment. Cell migration distance and cell coverage percentage for untreated and Y27632-treated cells were 98.9 and 59.4% and 203.4 and 92.5%, respectively. Conclusions. Inhibition of ROCK signaling by using 10 μM Y27632 promoted RPE cell motility during wound healing by reducing RPE cell adhesion strength.

Funder

Sanyo Broadcasting Foundation

Publisher

Hindawi Limited

Subject

Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3