Affiliation:
1. Department of Mathematics, Kyonggi University, Suwon 443-760, Republic of Korea
Abstract
We study a numerical radius preserving onto isometry onL(X). As a main result, whenXis a complex Banach space having both uniform smoothness and uniform convexity, we show that an onto isometryTonL(X)is numerical radius preserving if and only if there exists a scalarcTof modulus 1 such thatcTTis numerical range preserving. The examples of such spaces are Hilbert space andLpspaces for1<p<∞.
Funder
Kyonggi University Research