Affiliation:
1. Department of Physical and Environmental Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
2. Department of Statistics, Visva Bharati University, Bolpur Santiniketan, West Bengal 731235, India
Abstract
This study uses downscaled rainfall datasets from 16 coupled climate models at high resolution of 25 km from 1987 to 2001. The multimodel superensemble scheme is widely tested for rainfall forecast over mid-latitude, subtropical, and, especially, various regions of the monsoonal belt. A well-known statistical estimation theoretic approach, namely, Best Linear Unbiased Estimator (BLUE), is examined on 16 member models. The results are compared with superensemble methodology based on various skill scores. Results show that BLUE is providing promising forecasts. As far as comparative studies are concerned BLUE and superensemble schemes compete and show their importance from normal years to extreme rainfall years. BLUE methodology is capable of predicting draughts very well compared with other multimodel schemes. One basic advantage of BLUE is computationally less expensive than superensemble scheme. These statistical schemes like downscaling, BLUE, and superensemble can improve rainfall forecasts further, if a dense rain gauge data is provided.
Subject
Atmospheric Science,Pollution,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献