Structural Analysis and Improvement Design of Brake Pressure Valve Feedback Stage in Multivalve Parallel Brake System

Author:

Huang Zhi-peng1,Yu Bin1ORCID,Wang Yun-he1,Zhang Qi-wei2,Xie Yan3,Xie Zuo-jian4,Kong Xiang-dong1

Affiliation:

1. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China

2. Beijing Automation Control Equipment Institute, Beijing 100074, China

3. The First Aircraft Institute, Xian 710089, China

4. Shanghai Hengtuo Hydraulic Control Technology Co., Ltd., Shanghai 200031, China

Abstract

The wheel brake device is one of the most widely used landing deceleration devices in modern aircraft. For large aircraft, a multivalve parallel brake system is usually used. When a brake pressure servo valve of a certain type of aircraft is debugged, the output brake pressure of the system shows obvious periodic oscillation with constant amplitude. This paper focuses on the brake pressure servo valve, which is the key component of the system. There are a large number of feedback and adjustment segments in the brake pressure servo valve, which can not only improve the control accuracy but also introduce nonlinear factors to cause system vibration. Therefore, in this paper, the feedback stage structure of the brake pressure servo valve is analyzed and improved, and a new two-stage pressure servo valve is designed to restrain the output brake pressure vibration of the system. Firstly, the structure principle of the original pressure servo valve is defined, and the function of the feedback stage is analyzed. Secondly, in view of the vibration problem caused by the original brake pressure servo valve, a new two-stage brake pressure servo valve is designed, which is the main contribution of this paper. Thirdly, the dynamics model of the proposed two-stage brake pressure servo valve is established, and the simulation model of the brake pressure servo valve-controlled cylinder system and the multivalve parallel brake servo control system is built. Finally, experiments are carried out on the experimental platform of a multivalve parallel brake system to verify that the proposed two-stage pressure servo valve can restrain the vibration of the system more effectively than the original brake pressure servo valve. And the two-stage pressure servo valve prototype is successfully applied to the actual aircraft brake control system; the system can better maintain a stable brake pressure output.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3