Identifying Key Node with Motif-Based PageRank on Acupoint-Disease Network

Author:

Yu Xuelong1ORCID,Liu Xiao2ORCID,Luo Li3,Zhao Hai1

Affiliation:

1. Engineering Research Center of Security Technology of Complex Network System, School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China

2. Beijing PERCENT Technology Group Co. Ltd., Beijing 100096, China

3. School of Computer Communication, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

Existing research combines acupuncture theory with network science and proposes a new paradigm for the study of acupoint selection patterns—a key acupoint mining algorithm based on acupoint networks. However, the basic idea of this study for finding key acupoints is based on binary acupoint synergy relationships, which ignores the higher-order synergy among multiple acupoints and does not truly reflect the implicit patterns of each acupoint among meridian systems. Moreover, the mining results assessment method, which this new paradigm involves, does not have wide applicability and universality. In this paper, with the introduction of higher-order interactions between multiple acupoints, a high-specificity key acupoint mining algorithm based on 3-node motif is proposed in the acupoint-disease network (ADN). In response to the narrow applicability of the new research paradigm involving the evaluation of algorithms’ measures, new and widely applicable and universal evaluation criteria are introduced in terms of resolution, network loss, and accuracy, respectively. Based on the principles of acupoint selection involved in acupuncture clinics in Chinese medicine, the acupoints involved in the data were divided into a total of 19 regions according to their distribution characteristics. From these 19 regions, we selected the key acupoints that have a large impact on the global network. Finally, we compared this algorithm with five other acupoint importance assessment algorithms in terms of resolution, network loss, and accuracy, respectively. The comprehensive results show that the algorithm identifies key acupoints with an accuracy of 63%, which is 14% to 21% higher than other existing methods. The key acupoints identified by the algorithm have a significant disruptive effect on the connectivity of the network, indicating that the key acupoints are at the core of the acupoint-disease network topology. They have a significant propagation influence on other acupoints, which means that the key acupoints have high-synergistic cooperation with other acupoints. Meanwhile, the stability and specificity of the algorithm ensure the reliability of the key acupoints. We believe that the key acupoints identified by the algorithm can be used as core acupoints from the perspective of network topology and high synergy of other acupoints, respectively, and help researchers explore targeted and high-impact combinations of acupoints to optimize existing acupuncture prescriptions under condition constraints.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Reference46 articles.

1. A New Perspective of Acupuncture: The Interaction among Three Networks Leads to Neutralization

2. Progress of reseach on specificity of meridian acupoint efficacy

3. Analysis of functional status of Meridians in different types of TCM constitution;Y. Lin

4. Visualized analysis of incomplete TCM meridian conductance data;J. Yuan

5. Effects and Mechanisms of Acupuncture Based on the Principle of Meridians

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3