Research on the Pore Evolution of Oil Shale under Different Thermal Treatment Temperatures Using NMR and FE-SEM Methods

Author:

Xi Yan1ORCID,Li Jun23,Lian Wei3ORCID,Fu Haifeng4,Qi Yue5,Tian Yudong5

Affiliation:

1. Beijing University of Technology, Beijing 100124, China

2. China University of Petroleum-Beijing, Beijing 102249, China

3. China University of Petroleum-Beijing at Karamay, Karamay 834000, China

4. PetroChina Research Institute of Petroleum Exploration & Development, Langfang 065007, China

5. CNPC Daqing Drilling Engineering Corporation, Daqing 163311, China

Abstract

Underground in situ pyrolysis for oil shale extraction is currently significant; the evolutions in microstructure, porosity, and permeability parameters are essential factors in evaluating the productivity of oil shale after pyrolysis. With the underground oil shale reservoir core, obtained from Jimsar Sag in the Junggar Basin in China, as the research object, the samples were subjected to the treatment at different high temperatures (400°C, 500°C, 600°C, and 700°C). The NMR and FE-SEM experiments on oil shale samples were conducted; the T 2 relaxation spectra, pore size distribution, and porosity and permeability variation were analyzed; and the relationships between movable fluid saturation and porosity and permeability were established, respectively. The results showed that when the thermal treatment temperature increased, the porosity and permeability of oil shale rose continuously but showed different laws. With the temperature being lower than 400°C, the porosity increased slowly, and the growth rate of porosity increased rapidly when the thermal treatment temperature was higher than 500°C. In the pyrolysis temperature range of 25°C~400°C, the growth rate of permeability was relatively slow. With the continuously enhancing temperature (500°C~600°C), the growth rate of permeability accelerated rapidly. When the temperature continued to rise (700°C), the increase of permeability began to slow down. There is a nonlinear correlation between porosity and movable fluid saturation and an approximately linear correlation between permeability and movable fluid saturation. The findings showed that 600°C was the suitable temperature for the pyrolysis of oil shale.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3