Technical Performance Comparison of Horizontal and Vertical Ground-Source Heat Pump Systems

Author:

Gao Wu1ORCID,Masum Shakil1ORCID,Jiang Liangliang2ORCID

Affiliation:

1. School of Engineering, Cardiff University, The Queen’s Building, The Parade, Cardiff CF24 3AA, UK

2. Department of Chemical and Petroleum Engineering, The University of Calgary, Calgary, Alberta, Canada

Abstract

The configurations of ground heat exchangers (GHEs) play a significant role in the efficiency and sustainability of ground-source heat pump (GSHP) systems. However, there is a knowledge gap in understanding the performance differences between the horizontal and vertical GSHP systems in the same project under various heating and cooling demands. In this study, a technical performance comparison between GSHP systems coupled with horizontal ground loops and vertical boreholes under three scenarios of heating-to-cooling ratios (6 : 1, 2.4 : 1, and 1 : 1) was conducted. The simulations were based on a coupled thermal–hydraulic model for unsaturated soils that takes into account realistic ground surface boundary, GHE boundary, and the dynamics of heat pump efficiency. The GHEs were designed based on an experimental site located on the campus of a UK university. Results showed significant differences in the development of fluid temperatures and coefficient of performance (COP) of heat pumps between the horizontal and vertical GSHP systems due to the differences in the soil profiles and temperature boundaries. Both the fluid temperatures and heat pump COPs in the horizontal GSHP system reached a steady annual cycle after 2 years regardless of the heating-to-cooling ratios. For the vertical system, a general downward trend in the fluid temperatures and the COP of the heat pump in the heating mode can be found when a heating-to-cooling ratio was 6 : 1 or 2.4 : 1, while an overall upward trend in the fluid temperatures and the COP of the heat pump in the heating mode can be noted in the case of 1 : 1 heating-to-cooling ratio. Additionally, the heat pump operating in the cooling mode was off most of the time when a heating-to-cooling ratio was 6 : 1 or 2.4 : 1, while a declining trend in the COP of the heat pump in the cooling mode was exhibited in the case of a heating-to-cooling ratio of 1 : 1. The technical comparison reveals that the heating-to-cooling ratios would significantly affect the efficiency and sustainability of both GSHP systems.

Funder

Engineering and Physical Sciences Research Council

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3