Affiliation:
1. School of Electronic Information Engineering, Xi’an Technological University, Xi’an 710021, China
Abstract
For fault diagnosis of the two-input two-output mass-spring-damper system, a novel method based on the nonlinear output frequency response function (NOFRF) and multiblock principal component analysis (MBPCA) is proposed. The NOFRF is the extension of the frequency response function of the linear system to the nonlinear system, which can reflect the inherent characteristics of the nonlinear system. Therefore, the NOFRF is used to obtain the original fault feature data. In order to reduce the amount of feature data, a multiblock principal component analysis method is used for fault feature extraction. The least squares support vector machine (LSSVM) is used to construct a multifault classifier. A simplified LSSVM model is adopted to improve the training speed, and the conjugate gradient algorithm is used to reduce the required storage of LSSVM training. A fault diagnosis simulation experiment of a two-input two-output mass-spring-damper system is carried out. The results show that the proposed method has good diagnosis performance, and the training speed of the simplified LSSVM model is significantly higher than the traditional LSSVM.
Funder
Natural Science Basic Research Project of Shaanxi
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献