Affiliation:
1. School of Highway, Chang’an University, Xi’an 710064, China
2. School of Information Engineering, Chang’an University, Xi’an 710064, China
Abstract
Pavement performance prediction is a crucial issue in big data maintenance. This paper develops a hybrid grey relation analysis (GRA) and support vector machine regression (SVR) technique to predict pavement performance. The prediction model can solve the shortcomings of the traditional model including a single consideration factor, a short prediction period, and easy overfitting. GAR is employed in selecting the main factors affecting the performance of asphalt pavement. The SVR is performed to predict the performance. Finally, the data collected from the weather station installed on Guangyun Expressway were adopted to verify the validity of the GRA-SVR model. Meanwhile, the contrast with the grey model (GM (1, 1)), genetic algorithm optimization BP[[parms resize(1),pos(50,50),size(200,200),bgcol(156)]]081%, −0.823%, 1.270%, and −4.569%, respectively. The study concluded that the nonlinear and multivariate prediction model established by GRA-SVR has higher precision and operability, which can be used in long-period pavement performance prediction.
Funder
Guangdong Provincial Communication Department, Science and Technology Project
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献