The Impact of Violations of Bicycles and Pedestrians on Vehicle Emissions at Signalized Intersections

Author:

Huang Jianchang1ORCID,Song Guohua1ORCID,Zhang Jianbo1ORCID,Li Chenxu1,Liu Qiumei1ORCID,Yu Lei1ORCID

Affiliation:

1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China

Abstract

An intersection is a typical emission hot spot in the urban traffic network. And frequent violations such as running the red light have been a critical social problem at signalized intersections in developing countries. This article aimed to quantify the impact of violations (behaviors which will block the fleet) on emissions at signalized intersections. Increased emissions of vehicles affected by violations are of two levels: (1) trajectory level for the first four affected vehicles and (2) traffic flow level for the subsequent vehicles. At the trajectory level, the study focuses on the second-by-second activities of the first four affected vehicles. First, the trajectory model of the first affected vehicle is developed. Then, the trajectory of the other three vehicles is constructed using the Gipps car-following model. At the traffic flow level, a linear emission model is developed to describe the relationship between emission factors and idling time in the one-stop (vehicle stop once) and two-stop (vehicle stop twice) scenarios based on the global position system (GPS)-collected data at 44 intersections in Beijing. Based on the linear emission model, increased emissions at the traffic flow level are calculated as knowing the number of stops and idling time before and after violations. The analysis of the subsequent vehicles is divided into unsaturated and saturated conditions. Under the unsaturated condition, the emissions have barely increased due to the increase of idling time for one-stop vehicles caused by the violations. Under the saturated conditions, the emission increment increases sharply as the one-stop vehicle gradually transforms to a two-stop vehicle because of violations, and the maximum emission increment reaches 45% in half an hour in the case. The increment of emissions decreases steadily as the proportion of two-stop vehicles reaches 100% after violations, while the proportion before violations keeps increasing.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3