The Effect of Distraction Osteogenesis on Peripheral Nerve Regeneration in Rats: A Preliminary Study In Vivo

Author:

Liu Kai1,Chen Yuanxin2,Cai Feiyu1,Wang Xin1,Fan Chenchen1,Ren Peng1,Yusufu Aihemaitijiang1ORCID,Liu Yanshi3ORCID

Affiliation:

1. Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China

2. Uygur Medical College, Xinjiang Medical University, Urumqi, Xinjiang 830011, China

3. Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China

Abstract

Distraction osteogenesis (DO) is a widely employed method for the treatment of limb discrepancies and deformity correction. This study aimed at observing the histomorphological and ultrastructural changes of peripheral nerves around the distraction area during DO and investigating the self-repair mechanism of peripheral nerves in a rat DO model. Sixty rats underwent right femoral DO surgery and were randomly separated into six groups: Control (latency, no distraction, n = 10), Group 0-week (after distraction, n = 10), Group 2-week (n = 10), Group 4-week (n = 10), Group 6-week (n = 10), and Group 8-week (n = 10) at consolidation phase. The right femur of rats in Group 0-week, Group 2-week, Group 4-week, Group 6-week, and Group 8-week was subjected to continuous osteogenesis distraction at a rate of 0.5 mm/day for 10 days. Motor nerve conduction velocity (MNCV) of the sciatic nerve, sciatic function index (SFI), histological analyses, and transmission electron microscopy were conducted to evaluate nerve function. The MNCV and SFI of Group 0-week, Group 2-week, Group 4-week, and Group 6-week were significantly lower than the Control ( P < 0.05 ). No statistical differences were found between the Control and Group 8-week in terms of MNCV and SFI ( P > 0.05 ). Injuries to nerve fibres and nodes of Ranvier were observed in the Group 0-week, whereas the nerve fibres returned to the normal arrangement in the Group 8-week and oedema of myelin disappeared, with the continuity of axons and lamellar structure of myelin being restored. Femoral DO in rats with a rate of 0.5 mm/day may cause sciatic neurapraxia, which can be self-repaired after 8 weeks of consolidation. The paraneurium around the sciatic nerve enables it to glide during the distraction phase to reduce the occurrence of injurious changes.

Funder

Natural Science Foundation of Xinjiang

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3