Computer Vision-Based Autonomous Method for Quantitative Detection of Loose Bolts in Bolted Connections of Steel Structures
Author:
Affiliation:
1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
2. Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
Abstract
Funder
National Basic Research Program of China
Publisher
Hindawi Limited
Subject
Mechanics of Materials,Building and Construction,Civil and Structural Engineering
Link
http://downloads.hindawi.com/journals/schm/2023/8817058.pdf
Reference50 articles.
1. A comprehensive review of loosening detection methods for threaded fasteners
2. A Review of Bolt Tightening Force Measurement and Loosening Detection
3. Loose bolt detection in a complex assembly using a vibro-acoustic sensor array
4. Percussion-based bolt looseness identification using vibration-guided sound reconstruction;Y. Zhou;Structural Control and Health Monitoring,2022
5. Quantitative evaluation of bolt connection using a single piezoceramic transducer and ultrasonic coda wave energy with the consideration of the piezoceramic aging effect
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A review on vision-based deep learning techniques for damage detection in bolted joints;Asian Journal of Civil Engineering;2024-08-12
2. Research on a Method for Classifying Bolt Corrosion Based on an Acoustic Emission Sensor System;Sensors;2024-08-04
3. Tiny machine learning empowers climbing inspection robots for real-time multiobject bolt-defect detection;Engineering Applications of Artificial Intelligence;2024-07
4. Bolt loosening angle detection through arrangement shape-independent perspective transformation and corner point extraction based on semantic segmentation results;Structural Health Monitoring;2024-04-27
5. Multi-bolt looseness positioning using multivariate recurrence analytic active sensing method and MHAMCNN model;Structural Health Monitoring;2024-04-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3