A Comparison Study of Antiultraviolet and Sustained Release Properties of Polydopamine/Avermectin Microcapsule and Microsphere

Author:

Shen Zhichuan12ORCID,Zhou Xinhua12ORCID,Qiu Huina1,Xu Hua13,Chen Huayao13,Zhou Hongjun12ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510220, China

2. Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Guangzhou 510220, China

3. Guangzhou Key Lab for Efficient Use of Agricultural Chemicals, Guangzhou 510220, China

Abstract

By using dopamine (DA) as the monomer, the model drug avermectin (AVM) was loaded on polydopamine microspheres (AVM/PDAMS) and polydopamine microcapsules (AVM@PDAMC) by the method of impregnation and encapsulation, respectively. The materials’ structures were systematically characterized using Fourier transform infrared spectroscopy (FTIR), zeta potential analysis, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The comparison of antiultraviolet capability as well as release behaviors under different pH values of the materials were studied. The results showed that a spherical appearance was observed from both materials. The use of AVM/PDAMS and AVM@PDAMC made the decomposition temperature of AVM increase to 235°C and 245°C, respectively. After being exposed to ultraviolet light for 1400 min, the residual ratios of AVM of AVM/PDAMS and AVM@PDAMC were 42% and 54%, respectively. Both AVM/PDAMS and AVM@PDAMC showed acid sensitivity. AVM/PDAMS and AVM@PDAMC took about 13 h and 60 h to reach the release rate of 50% under pH 3. The release process of AVM/PDAMS could be explained by the Weibull model at pH 3, while the release behavior of AVM@PDAMC fitted the Baker–Lonsdale equation. At pH 7 and pH 9, both of the delivery materials followed the Korsmeyer–Peppas model and belonged to the Fick diffusion.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3