Anticollision Method of Active Magnetic Guidance Ranging for Cluster Wells

Author:

Dou Xinyu123ORCID,Liang Huaqing12ORCID,Liu Yang12

Affiliation:

1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing 102249, China

2. College of Geophysics and Information Engineering, China University of Petroleum-Beijing, Beijing 102249, China

3. Intelligence and Information Engineering College, Tangshan University, Tangshan 063000, China

Abstract

Conventional adjacent wells range scanning calculations cannot meet the accuracy demands of the anticollision measurement of borehole distances any longer. Current techniques commonly employ electromagnetic detection tools while drilling; this requires putting equipment down adjacent wells to avoid collision risks, which adds more workload and costs and sometimes even affects the normal production of the producing wells. Measuring and tracking adjacent borehole distances while drilling is an essential process that guides the drill bit and effectively avoids collisions with existing wells. This paper proposes an active anticollision method of rotating magnetic ranging based on double symmetrical magnetic sources with opposite magnetic moments. First, the proposed method uses magnetic sources in the drilling well that are built into the probe tube to generate a magnetic field; then, the ferromagnetic casing of the existing well would be magnetized by the abovementioned magnetic field; finally, the magnetization field of the ferromagnetic casing is measured by a triaxial magnetometer built into the probe tube to determine the spacing and position of the existing well. Simultaneously, the calculation models of magnetic flux density around the casing of the existing well and magnetic sources are established, the calculation formulae of the relative distance and position of two adjacent wells are deduced, and a new variable interval section segmentation is proposed based on the Cosine theorem. The simulation results demonstrate that the spacing and position of the existing well are determined based on the magnetic sources’ spacing inside the probe, the magnetic moment of the magnetic sources, the relative permeability of the casing, the diameter of the casing, and the inclination between the drilling well and the existing well. The validity and accuracy of the active magnetization model are confirmed, providing theoretical support for the further development of electromagnetic anticollision devices.

Funder

National Science and Technology Major Project

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3