BUPNN: Manifold Learning Regularizer-Based Blood Usage Prediction Neural Network for Blood Centers

Author:

Pan Lingling12,Zang Zelin3ORCID,Ma Siqi3,Hu Wei12ORCID,Hu Zhechang1

Affiliation:

1. Blood Center of Zhejiang Province, 789 Jianye Road, Binjiang District, Hangzhou 310052, Zhejiang, China

2. Key Laboratory of Blood Safety Research, Hangzhou 310052, Zhejiang, China

3. AI Lab, School of Engineering, Westlake University, Hangzhou 310052, Zhejiang, China

Abstract

Blood centers are an essential component of the healthcare system, as timely blood collection, processing, and efficient blood dispatch are critical to the treatment of patients and the performance of the entire healthcare system. At the same time, an efficient blood dispatching system through the high-precision predictive capability of artificial intelligence is crucial for the efficiency improvement of the blood centers. However, the current artificial intelligence (AI) models for predicting blood usage do not meet the needs of blood centers. The challenges of AI models mainly include lower generalization ability in different hospitals, limited stability under missing values, and low interpretability. An artificial neural network-based model named the blood usage prediction neural network (BUPNN) has been developed to address these challenges. BUPNN includes a novel similarity-based manifold regularizer that aims to enhance network mapping consistency and, thus, overcome the domain bise of different hospitals. Moreover, BUPNN diminishes the performance degradation caused by missing values through data enhancement. Experimental results on a large amount of accurate data demonstrate that BUPNN outperforms the baseline method in classification and regression tasks and excels in generalization and consistency. Moreover, BUPNN has solid potential to be interpreted. Therefore, the decision-making process of BUPNN is explored to the extent that it acts as an aid to the experts in the blood center.

Funder

Science Research Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3