Disruption-Free Load Balancing for Aerial Access Network

Author:

Li Na1ORCID,Zhao Yue2ORCID,Hu Ning34ORCID,Teng Jing5ORCID

Affiliation:

1. Department of Special Medicine, Xiangya 3rd Hospital, Central South University, China

2. Science and Technology on Communication Security Laboratory, China

3. Cyberspace Institute of Advanced Technology, Guangzhou University, China

4. Peng Cheng Laboratory, China

5. School of Control and Computer Engineering, North China Electric Power University, China

Abstract

A fundamental issue of 6G networks with aerial access networks (AAN) as a core component is that user devices will send high-volume traffic via AAN to backend servers. As such, it is critical to load balance such traffic such that it will not cause network congestion or disruption and affect users’ experience in 6G networks. Motivated by the success of software-defined networking-based load balancing, this paper proposes a novel system called Tigris, to load balance high-volume AAN traffic in 6G networks. Different from existing load balancing solutions in traditional networks, Tigris tackles the fundamental disruption-resistant challenge in 6G networks for avoiding disruption of continuing flows and the control-path update challenge for limiting the throughput of updating load balancing instructions. Tigris achieves disruption-free and low-control-path-cost load balancing for AAN traffic by developing an online algorithm to compute disruption-resistant, per-flow load balancing policies and a novel bottom-up algorithm to compile the per-flow policies into a highly compact rule set, which remains disruption-resistant and has a low control-path cost. We use extensive evaluation to demonstrate the efficiency and efficacy of Tigris to achieve zero disruption of continuing AAN flows and an extremely low control-path update overhead, while existing load balancing techniques in traditional networks such as ECMP cause high load variance and disrupt almost 100% continuing AAN flows.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3