Virtual Network Resource Optimization Model for Network Function Virtualization

Author:

Vladislavić Đani1ORCID,Huljenić Darko1ORCID,Ožegović Julije2ORCID

Affiliation:

1. Ericsson Nikola Tesla d.d., Zagreb, Croatia

2. Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Croatia

Abstract

Network function virtualization (NFV) is a concept aimed at achieving telecom grade cloud ecosystem for new-generation networks focusing on capital and operational expenditure (CAPEX and OPEX) savings. This study introduces empirical throughput prediction model for the virtual network function (VNF) and network function virtualization infrastructure (NFVI) architectures based on Linux kernel. The model arises from the methodology for performance evaluation and modeling based on execution area (EA) distribution by CPU core pinning. EA is defined as a software execution unit that can run isolated on a compute resource (CPU core). EAs are derived from the elements and packet processing principles in NFVIs and VNFs based on Linux kernel. Performing measurements and observing linearity of the measured results open the possibility to apply model calibration technique to achieve general VNF and NFVI architecture model with performance prediction and environment setup optimization. The modeling parameters are derived from the cumulative packet processing cost obtained by measurements for collocated EAs on the CPU core hosting the bottleneck EA. The VNF and NFVI architecture model with performance prediction is successfully validated against the measurement results obtained in emulated environment and used to predict optimal system configurations and maximal throughput results for different CPUs.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference31 articles.

1. ETSI GS NFV 002 V1.2.1: network functions virtualization (NFV); architectural framework;ETSI Industry Specification Group (ISG) NFV,2014

2. Throughput Evaluation of Kernel based Packet Switching in a Multi-core System

3. The performance analysis of linux networking – Packet receiving

4. Performance Modeling of Virtual Switching Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3