Global Optimization of Redescending Robust Estimators

Author:

Baselga Sergio1ORCID,Klein Ivandro23ORCID,Suraci Stefano Sampaio4ORCID,Oliveira Leonardo Castro de4ORCID,Matsuoka Marcelo Tomio5ORCID,Rofatto Vinicius Francisco5ORCID

Affiliation:

1. Department of Cartographic Engineering, Geodesy and Photogrammetry, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain

2. Department of Civil Construction, Federal Institute of Santa Catarina, Florianopolis 88020-300, SC, Brazil

3. Graduate Program in Geodetic Sciences, Federal University of Paraná, Curitiba 81531-990, PR, Brazil

4. Cartographic Engineering Department, Military Institute of Engineering, Rio de Janeiro, Brazil

5. Institute of Geography, Federal University of Uberlandia, Monte Carmelo 38500-000, MG, Brazil

Abstract

Robust estimation has proved to be a valuable alternative to the least squares estimator for the cases where the dataset is contaminated with outliers. Many robust estimators have been designed to be minimally affected by the outlying observations and produce a good fit for the majority of the data. Among them, the redescending estimators have demonstrated the best estimation capabilities. It is little known, however, that the success of a robust estimation method depends not only on the robust estimator used but also on the way the estimator is computed. In the present paper, we show that for complicated cases, the predominant method of computing the robust estimator by means of an iteratively reweighted least squares scheme may result in a local optimum of significantly lower quality than the global optimum attainable by means of a global optimization method. Further, the sequential use of the proposed global robust estimation proves to successfully solve the problem of M-split estimation, that is, the determination of parameters of different functional models implicit in the data.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3