Crow Search Algorithm for MEMS Gyroscope Temperature Drift Signal and Processing for Denoising

Author:

Wang Xichen1ORCID,Cao Huiliang2ORCID,Duan Xiaomin3ORCID

Affiliation:

1. School of Instrument and Electronics, North University of China, Tai Yuan 030051, China

2. Science and Technology on Electronic Test & Measurement Laboratory, North University of China, Tai Yuan 030051, China

3. School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China

Abstract

To solve the problem of micro-electro-mechanical system (MEMS) gyroscope noise, this paper presents a variational mode decomposition (VMD) method based on crow search algorithm. First, the signal was decomposed by variational mode decomposition for optimization of crow search algorithm (CSA-VMD) method. The parameters required by the VMD method (penalty parameter α and decomposition number K) are given by the crow search algorithm, and then the signal is decomposed into the superposition of multiple subsignals, called intrinsic mode functions (IMFs). The sample entropy (SE) corresponding to each IMF is then obtained. By calculating the sample entropy, the noise signal can be divided into pure noise part, mixing part, and temperature drift part. Second, Savitzky–Golay smoothing denoising (SG) is used to filter the mixed noise signal to eliminate the influence of noise. Third, for the filtering of the drift part, the least square support vector machine optimized by the crow search algorithm (CSA-LSSVM) was used to filter, so as to reduce the effect of temperature drift. Finally, the processed signal is reconstructed to achieve the goal of denoising. Through the results, it can be found that the optimized VMD and LSSVM using CSA algorithm can achieve more effective denoising. After using the method proposed in this paper, the angular random walk value is 1.1175   10−4°/h/√Hz, and the bias stability is 0.0017°/h. Compared with the original signal, the two signals are optimized by 98.1% and 98.2%, respectively. It can be seen from the experimental results that the proposed CSA-VMD method, SG method, and CSA-LSSVM method can effectively eliminate noise effects.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3